Data Engineering on Microsoft Azure

Microsoft Technical

Find out more

Course Code: DP-203T00

Course Length: 4 Days

Delivered: Virtually

OVERVIEW:

In this course, the student will learn about the data engineering patterns and practices as it pertains to working with batch and real-time analytical solutions using Azure data platform technologies. Students will begin by understanding the core compute and storage technologies that are used to build an analytical solution. They will then explore how to design an analytical serving layers and focus on data engineering considerations for working with source files. The students will learn how to interactively explore data stored in files in a data lake. They will learn the various ingestion techniques that can be used to load data using the Apache Spark capability found in Azure Synapse Analytics or Azure Databricks, or how to ingest using Azure Data Factory or Azure Synapse pipelines. The students will also learn the various ways they can transform the data using the same technologies that is used to ingest data. The student will spend time on the course learning how to monitor and analyze the performance of analytical system so that they can optimize the performance of data loads, or queries that are issued against the systems. They will understand the importance of implementing security to ensure that the data is protected at rest or in transit. The student will then show how the data in an analytical system can be used to create dashboards, or build predictive models in Azure Synapse Analytics. This course may earn a Credly Badge.

COURSE PREREQUISITES:

Successful students start this course with knowledge of cloud computing and core data concepts and professional experience with data solutions.

Specifically completing:

TARGET AUDIENCE:

The primary audience for this course is data professionals, data architects, and business intelligence professionals who want to learn about data engineering and building analytical solutions using data platform technologies that exist on Microsoft Azure. The secondary audience for this course data analysts and data scientists who work with analytical solutions built on Microsoft Azure.

COURSE OBJECTIVES:

COURSE CONTENT:

Explore compute and storage options for data engineering workloads

Design and implement the serving layer

Data engineering considerations for source files

Run interactive queries using Azure Synapse Analytics serverless SQL pools

Explore, transform, and load data into the Data Warehouse using Apache Spark

Data exploration and transformation in Azure Databricks

Ingest and load data into the data warehouse

Transform data with Azure Data Factory or Azure Synapse Pipelines

Orchestrate data movement and transformation in Azure Synapse Pipelines

Optimize query performance with dedicated SQL pools in Azure Synapse

Analyze and Optimize Data Warehouse Storage

Support Hybrid Transactional Analytical Processing (HTAP) with Azure Synapse Link

End-to-end security with Azure Synapse Analytics

Real-time Stream Processing with Stream Analytics

Create a Stream Processing Solution with Event Hubs and Azure Databricks

Build reports using Power BI integration with Azure Synpase Analytics

Perform Integrated Machine Learning Processes in Azure Synapse Analytics

Apply for this course

Leave us your email address and phone number and one of our team will be in touch to find out a bit more about you and discuss next steps.

Thank you, we'll get in touch
Oops! Something went wrong while submitting the form. Please try again or give us a call.